SENATE COMMITTEE ON ENVIRONMENTAL QUALITY SENATE COMMITTEE ON NATURAL RESOURCES AND WATER

CLOGGING CALIFORNIA'S OCEAN WITH PLASTICS

Wednesday, March 20, 2019

Dr. CLARE STEELE California State University, Channel Islands

Microplastic types

Plastic particles and fibers less than 5 mm – 0.001 mm

Primary microplastics Manufactured microbeads, nurdles

Secondary microplastics Fragments of larger items

Microbeads (Scrub)

Microbeads (Detergent)

Nurdles (Pellets)

Plastic fragments

Characterizing ocean microplastics

Polypropylene (24%), low-density polyethylene (21%), polyvinyl chloride (19%) and high-density polyethylene (17%) - Andrady 2011

Additives:

Plasticizers, phthalates, antioxidants, anti-static agents and flame retardants

Adsorbed chemicals: PCBs, DDT, brominated flameretardants

Floating microplastics estimated at 15 - 51 trillion particles - van Sebille et al. 2015

Ocean microplastics present even in remote regions

Surface waters

Deep waters

Beach sediments

Deep ocean sediments

Microplastics ubiquitous on CA beaches

- Present in beach sands at 51 beaches including Channel Islands
- Ingested by Pacific mole crabs (35%) and enter coastal foodwebs

San Onofre

Surface deposition on biological communities

Plastic waste associated with disease on coral reefs

Joleah B. Lamb^{1,2,3,*}, Bette L. Willis^{2,3}, Evan A. Fiorenza^{1,4}, Courtney S. Couch^{1,5,6}, Robert Howard⁷, Douglas N. Rader⁸, + See all authors and affiliations

Science 26 Jan 2018: Vol. 359, Issue 6374, pp. 460-462 DOI: 10.1126/science.aar3320

Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs Marine Pollution Bulletin

Volume 135, October 2018, Pages 1085-1089

Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates Marine Chemistry Volume 175, 20 October 2015, Pages 39-46

Ingestion of microplastics

- Over 220 different species have been found to consume microplastic
- Small size makes microplastics indistinguishable from natural prey
- May be accidentally ingested when filter feeding

Ingestion of microplastics

Microplastics directly consumed by:

- ocean trench amphipods (7000 10,000 m depth)
- endangered tidewater gobies in California
- 63 species of seabird

Effects of microplastic ingestion

- Physical false satiation, altered feeding behavior, gut perforation, tissue damage
- Chemical toxicity, inflammation, impacts to reproduction and growth
- Demonstrated impacts at the sub-lethal / individual mortality rather than populationlevel

Ongoing concerns

- Microplastics are ubiquitous in marine environments and increasing
- Evidence regarding microplastic toxicity is emerging
- Seafood consumption is one pathway for human microplastics exposure
 - Present in mussels, oysters, fishes sold for human consumption
 - 50-100 particles per mussel
 - Up to 11,000 particles consumed per year
- Bioaccumulation and food chain effects are not yet well understood

Dr. Clare Steele California State University, Channel Islands clare.steele@csuci.edu microplastics.xyz

