San Onofre Nuclear Generating Station (SONGS)
San Onofre Nuclear Generating Station

- San Onofre Nuclear Generating Station (SONGS) Units 2 & 3 have been safely serving California customers since 1983
 - SONGS Unit 1 served customers from 1968-1992

- SONGS:
 - serves 1.4 million customers
 - economic contributor to state
 - avoids 6 – 10 million metric tons (carbon dioxide-equivalent) every year
 - Equivalent to removing 1.2 – 2.0 Million passenger cars/year
 - facilitates grid stability and import capabilities
 - clean, cost-effective source of electricity
SONGS’ Seismic Design

• NRC requires that plants must be designed to withstand the effects of natural phenomena including earthquakes, tornadoes, hurricanes, floods, and tsunamis that could credibly occur near the plant’s location

• Seismic design of SONGS is robust
 – based on extensive studies prior to initial construction with periodic updates that evaluate recent scientific data
 – designed to a peak ground acceleration value of 0.67g
 – safety-related structures, systems and components (SSC) must remain functional to maintain the safety of the reactor and prevent release of radioactive material off-site

• On-going Seismic Program
 – periodic evaluations of new information on seismic and tsunami hazards
 – utilizes input from academia, research, and geotechnical professionals
 – independently reviewed by external experts
SONGS’ Tsunami Seawall Design

- Seawall has a height of 30 feet
 - model assumed a vertical displacement of a local fault system to generate the tsunami
 - Not credible given the fault system is strike-slip
 - also assumed simultaneous high tide, storm surge, and storm waves
Seismic and Tsunami Studies

<table>
<thead>
<tr>
<th>Through early 1980s</th>
<th>Deterministic Analysis – extensive geotechnical studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Probabilistic Seismic Hazard Analysis</td>
</tr>
<tr>
<td>2001</td>
<td>Probabilistic Seismic Hazard Analysis – follow-up study</td>
</tr>
<tr>
<td>2010 – 2011</td>
<td>Probabilistic Seismic Hazard Analysis – follow-up study</td>
</tr>
<tr>
<td></td>
<td>Evaluated “Tsunami Inundation Map for Emergency Planning”</td>
</tr>
<tr>
<td></td>
<td>Evaluating Probabilistic Tsunami Hazard Analysis – mid-2011</td>
</tr>
</tbody>
</table>

Future work

Source Characterization:
- Additional GPS and seismic monitoring
- 2D/3D reflective mapping
- Data re-processing and re-analyzing using modern techniques
- Seismic source workshops

Ground Motion:
- Site specific characterization and site response analysis

Probabilistic Seismic Hazard Analysis
SONGS Heat Removal

- Critical Function: maintain heat removal from the nuclear fuel
 - Steam generator heat removal
 - Emergency core cooling

- Redundancy by design
Dedicated Water Supplies

• On-site
 – 3 million gallons in seismically qualified tanks
 – 5.3 million gallons total (seismic + non-seismic)

• Two redundant trains: electrical pumps, valves, and pipes

• One steam-driven pump for heat removal through the steam generators
Emergency Electrical Supplies

- 2 emergency diesel generators/unit
- Ability to cross-connect: only 1 emergency diesel generator needed
- 5000 KW each
- 30 ft elevation, building withstands seismic and flooding
- 7 day supply of diesel fuel
- Subsurface vaults, built to withstand seismic and flooding
- Emergency batteries and switch gears
- 50 ft elevation, building withstands seismic and flooding
Used Fuel Pool

Unit 2/3 Containment (Reactor Building)

Fuel Handling Building
Used Fuel Storage

3421 used fuel assemblies are safely stored on site

- Used Fuel Pool (~1200 assemblies per pool)
 - Seismically designed reinforced concrete structure
 - Stainless steel plate liner
 - >23 ft of borated water over used fuel assemblies
 - Emergency replacement water on-site capability

- Dry Cask Storage (~970 assemblies)
 - Used fuel assemblies are stored in stainless steel canisters and housed in robust reinforced concrete structures
 - Capability to withstand flood and seismic conditions
Used Fuel Pool

- Designed to hold used fuel safely and securely
- Top of used fuel assemblies are at ~ 30 ft
- Water depth is ~ 55 ft
- One engineered pool per reactor
Used Fuel Transfer and Storage

- Used fuel assemblies are transferred to robust steel canisters once they have cooled to acceptable levels in the used fuel pool.
- Canisters are drained and filled with helium before being sealed.
- Sealed canisters are transferred to the secure dry cask storage facility for monitoring and management.
Byproducts are Carefully Managed

- Used fuel is:
 - strictly regulated by the NRC
 - safely, securely, and economically stored on-site
 - Initially in used fuel pool
 - Later, in dry cask storage facility
 - Room for storage of all used fuel

- On-site dry cask storage is an interim solution that allows informed planning for long-term safe disposition of used fuel

- Broad consensus that a geologic repository is the appropriate approach for permanent disposition and isolation of used fuel
Severe and Extreme Accident Response

• **B.5B Mitigation Strategies** – Actions to address extensive plant damage, which include:
 - Use of firewater and portable pump (fire truck or skid pumps) to feed steam generators, replace used fuel pool water, or flood containment
 - Depressurizing steam generators using atmospheric dump valves
 - Command and control in the event of loss of control room
 - Manual operation of steam-driven pump without electrical power

• **Severe Accident Management Guidelines** – Actions to address malfunctions beyond design conditions, even core melt, which include:
 - Depressurizing the reactor coolant system
 - Reducing containment hydrogen and control flammability
 - Mitigating fission product releases, regardless of core conditions
 - Providing cooling water into reactor cooling system and steam generators
Additional Organizational Capabilities

• Onsite Fire Department
 – Minimum of 5 personnel on site 24/7, typically 6-7
 – 2 Fire Engines, one pumper and one 75-ft aerial ladder truck
 – Hazardous materials response capability with staff of 7
 • Mutual aid from San Diego and Marine Corps

• Recurring Emergency Preparedness Training
 – 4 Emergency Response Organization teams
 – Dedicated on-site and off-site Emergency Response Facilities
 – Periodic table top and full-scope drills (minimum of 4 annually)
Current Performance

• SCE is committed to
 – Maintain and strengthen the environment for employees to raise concerns
 – Full compliance with all company and regulatory standards
 – Continuous progress toward excellence

• NRC concluded in their annual review that SONGS 2 & 3 were operated in a manner that preserved public health and safety and met all cornerstone objectives
 – Resolved issues
 • NRC problem identification and resolution cross-cutting issue
 • NRC Confirmatory Order
 • NRC loose battery connections white finding
 – Remaining issues
 • NRC human performance cross-cutting issue
 • NRC chilling effects letter
Summary

• Seismic Event Design Readiness
 – Fault systems offshore in the vicinity of SONGS are strike-slip, not a significant tsunami source
 – Critical equipment is located at elevations above the maximum credible tsunami wave height for San Onofre
 – SONGS has robust and redundant emergency back-up power capabilities
 – SCE stores 5.3 million gallons of water on-site, 3 million of which is in seismically qualified tanks that can provide replacement cooling

• Response Readiness
 – SCE has reconfirmed the capability and resources to respond to “beyond design basis” events

• SCE is committed to learning from the Fukushima Daiichi accident and to identify additional actions that can be taken to further enhance our readiness for severe accidents